图书介绍

Feedback Control of Dynamic Systems【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

Feedback Control of Dynamic Systems
  • Sanjay H. S. 著
  • 出版社: Pearson
  • ISBN:
  • 出版时间:2015
  • 标注页数:0页
  • 文件大小:107MB
  • 文件页数:882页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Feedback Control of Dynamic SystemsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Preface13

1 An Overview and Brief History of Feedback Control21

A Perspective on Feedback Control21

Chapter Overview22

1.1 A Simple Feedback System23

1.2 A First Analysis of Feedback26

1.3 Feedback System Fundamentals30

1.4 A Brief History31

1.5 An Overview of the Book37

Summary39

Review Questions39

Problems40

2 Dynamic Models43

A Perspective on Dynamic Models43

Chapter Overview44

2.1 Dynamics of Mechanical Systems44

2.1.1 Translational Motion44

2.1.2 Rotational Motion51

2.1.3 Combined Rotation and Translation59

2.1.4 Complex Mechanical Systems (W)62

2.1.5 Distributed Parameter Systems62

2.1.6 Summary:Developing Equations of Motion for Rigid Bodies64

2.2 Models of Electric Circuits65

2.3 Models of Electromechanical Systems70

2.3.1 Loudspeakers70

2.3.2 Motors72

2.3.3 Gears76

2.4 Heat and Fluid-Flow Models77

2.4.1 Heat Flow78

2.4.2 Incompressible Fluid Flow81

2.5 Historical Perspective88

Summary91

Review Questions91

Problems92

3 Dynamic Response104

A Perspective on System Response104

Chapter Overview105

3.1 Review of Laplace Transforms105

3.1.1 Response by Convolution106

3.1.2 Transfer Functions and Frequency Response111

3.1.3 The ?_ Laplace Transform121

3.1.4 Properties of Laplace Transforms123

3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion125

3.1.6 The Final Value Theorem127

3.1.7 Using Laplace Transforms to Solve Differential Equations129

3.1.8 Poles and Zeros131

3.1.9 Linear System Analysis Using MatlabR132

3.2 System Modeling Diagrams138

3.2.1 The Block Diagram138

3.2.2 Block-Diagram Reduction Using Matlab142

3.2.3 Mason’s Rule and the Signal Flow Graph (W)143

3.3 Effect of Pole Locations143

3.4 Time-Domain Specifications151

3.4.1 Rise Time152

3.4.2 Overshoot and Peak Time152

3.4.3 Settling Time154

3.5 Effects of Zeros and Additional Poles157

3.6 Stability166

3.6.1 Bounded Input-Bounded Output Stability167

3.6.2 Stability of LTI Systems168

3.6.3 Routh’s Stability Criterion169

3.7 Obtaining Models from Experimental Data:System Identification (W)176

3.8 Amplitude and Time Scaling (W)176

3.9 Historical Perspective176

Summary177

Review Questions179

Problems179

4 A First Analysis of Feedback200

A Perspective on the Analysis of Feedback200

Chapter Overview201

4.1 The Basic Equations of Control202

4.1.1 Stability203

4.1.2 Tracking204

4.1.3 Regulation205

4.1.4 Sensitivity206

4.2 Control of Steady-State Error to Polynomial Inputs:System Type208

4.2.1 System Type for Tracking209

4.2.2 System Type for Regulation and Disturbance Rejection214

4.3 The Three-Term Controller:PID Control216

4.3.1 Proportional Control (P)216

4.3.2 Integral Control (I)218

4.3.3 Derivative Control (D)221

4.3.4 Proportional Plus Integral Control (PI)221

4.3.5 PID Control222

4.3.6 Ziegler-Nichols Tuning of the PID Controller226

4.4 Feedforward Control by Plant Model Inversion232

4.5 Introduction to Digital Control (W)234

4.6 Sensitivity of Time Response to Parameter Change (W)235

4.7 Historical Perspective235

Summary237

Review Questions238

Problems238

5 The Root-Locus Design Method254

A Perspective on the Root-Locus Design Method254

Chapter Overview255

5.1 Root Locus of a Basic Feedback System255

5.2 Guidelines for Determining a Root Locus260

5.2.1 Rules for Determining a Positive (180°)Root Locus262

5.2.2 Summary of the Rules for Determining a Root Locus268

5.2.3 Selecting the Parameter Value269

5.3 Selected Illustrative Root Loci271

5.4 Design Using Dynamic Compensation284

5.4.1 Design Using Lead Compensation286

5.4.2 Design Using Lag Compensation290

5.4.3 Design Using Notch Compensation292

5.4.4 Analog and Digital Implementations (W)294

5.5 A Design Example Using the Root Locus295

5.6 Extensions of the Root-Locus Method301

5.6.1 Rules for Plotting a Negative (0°)Root Locus301

5.6.2 Consideration of Two Parameters304

5.6.3 Time Delay (W)306

5.7 Historical Perspective307

Summary309

Review Questions310

Problems311

6 The Frequency-Response Design Method328

A Perspective on the Frequency-Response Design Method328

Chapter Overview329

6.1 Frequency Response329

6.1.1 Bode Plot Techniques337

6.1.2 Steady-State Errors350

6.2 Neutral Stability351

6.3 The Nyquist Stability Criterion353

6.3.1 The Argument Principle354

6.3.2 Application of The Argument Principle to Control Design355

6.4 Stability Margins368

6.5 Bode’s Gain-Phase Relationship377

6.6 Closed-Loop Frequency Response381

6.7 Compensation383

6.7.1 PD Compensation383

6.7.2 Lead Compensation (W)384

6.7.3 PI Compensation394

6.7.4 Lag Compensation395

6.7.5 PID Compensation401

6.7.6 Design Considerations407

6.7.7 Specifications in Terms of the Sensitivity Function409

6.7.8 Limitations on Design in Terms of the Sensitivity Function414

6.8 Time Delay418

6.8.1 Time Delay via the Nyquist Diagram (W)420

6.9 Alternative Presentation of Data420

6.9.1 Nichols Chart420

6.9.2 The Inverse Nyquist Diagram (W)424

6.10 Historical Perspective424

Summary425

Review Questions428

Problems428

State-Space Design453

7 A Perspective on State-Space Design453

Chapter Overview454

7.1 Advantages of State-Space454

7.2 System Description in State-Space456

7.3 Block Diagrams and State-Space462

7.4 Analysis of the State Equations464

7.4.1 Block Diagrams and Canonical Forms465

7.4.2 Dynamic Response from the State Equations477

7.5 Control-Law Design for Full-State Feedback483

7.5.1 Finding the Control Law484

7.5.2 Introducing the Reference Input with Full-State Feedback493

7.6 Selection of Pole Locations for Good Design497

7.6.1 Dominant Second-Order Poles497

7.6.2 Symmetric Root Locus (SRL)499

7.6.3 Comments on the Methods508

7.7 Estimator Design509

7.7.1 Full-Order Estimators509

7.7.2 Reduced-Order Estimators515

7.7.3 Estimator Pole Selection519

7.8 Compensator Design:Combined Control Law and Estimator (W)521

7.9 Introduction of the Reference Input with the Estimator (W)534

7.9.1 General Structure for the Reference Input535

7.9.2 Selecting the Gain544

7.10 Integral Control and Robust Tracking545

7.10.1 Integral Control546

7.10.2 Robust Tracking Control:The Error-Space Approach548

7.10.3 Model-Following Design559

7.10.4 The Extended Estimator563

7.11 Loop Transfer Recovery567

7.12 Direct Design with Rational Transfer Functions572

7.13 Design for Systems with Pure Time Delay576

7.14 Solution of State Equations (W)579

7.15 Historical Perspective579

Summary582

Review Questions585

Problems586

8 Digital Control610

A Perspective on Digital Control610

Chapter Overview611

8.1 Digitization611

8.2 Dynamic Analysis of Discrete Systems614

8.2.1 z-Transform614

8.2.2 z-Transform Inversion615

8.2.3 Relationship Between s and617

8.2.4 Final Value Theorem619

8.3 Design Using Discrete Equivalents621

8.3.1 Tustin’s Method622

8.3.2 Zero-Order Hold (ZOH) Method625

8.3.3 Matched Pole-Zero (MPZ) Method627

8.3.4 Modified Matched Pole-Zero(MMPZ) Method631

8.3.5 Comparison of Digital Approximation Methods632

8.3.6 Applicability Limits of the Discrete Equivalent Design Method633

8.4 Hardware Characteristics633

8.4.1 Analog-to-Digital (A/D) Converters634

8.4.2 Digital-to-Analog Converters634

8.4.3 Anti-Alias Prefilters635

8.4.4 The Computer636

8.5 Sample-Rate Selection637

8.5.1 Tracking Effectiveness638

8.5.2 Disturbance Rejection638

8.5.3 Effect of Anti-Alias Prefilter639

8.5.4 Asynchronous Sampling640

8.6 Discrete Design640

8.6.1 Analysis Tools641

8.6.2 Feedback Properties642

8.6.3 Discrete Design Example643

8.6.4 Discrete Analysis of Designs646

8.7 Discrete State-Space Design Methods (W)648

8.8 Historical Perspective648

Summary649

Review Questions651

Problems651

9 Nonlinear Systems657

A Perspective on Nonlinear Systems657

Chapter Overview658

9.1 Introduction and Motivation:Why Study Nonlinear Systems?659

9.2 Analysis by Linearization661

9.2.1 Linearization by Small-Signal Analysis661

9.2.2 Linearization by Nonlinear Feedback666

9.2.3 Linearization by Inverse Nonlinearity667

9.3 Equivalent Gain Analysis Using the Root Locus668

9.3.1 Integrator Antiwindup675

9.4 Equivalent Gain Analysis Using Frequency Response:Describing Functions678

9.4.1 Stability Analysis Using Describing Functions685

9.5 Analysis and Design Based on Stability690

9.5.1 The Phase Plane690

9.5.2 Lyapunov Stability Analysis697

9.5.3 The Circle Criterion703

9.6 Historical Perspective710

Summary711

Review Questions711

Problems712

10 Control System Design:Principles and Case Studies723

A Perspective on Design Principles723

Chapter Overview724

10.1 An Outline of Control Systems Design725

10.2 Design of a Satellite’s Attitude Control731

10.3 Lateral and Longitudinal Control of a Boeing 747749

10.3.1 Yaw Damper753

10.3.2 Altitude-Hold Autopilot761

10.4 Control of the Fuel-Air Ratio in an Automotive Engine767

10.5 Control of the Read/Write Head Assembly of a Hard Disk775

10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing783

10.7 Chemotaxis or How E.Coli Swims Away from Trouble797

10.8 Historical Perspective806

Summary808

Review Questions810

Problems810

Appendix A Laplace Transforms824

A.1 The?_ Laplace Transform824

A.1.1 Properties of Laplace Transforms825

A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion833

A.1.3 The Initial Value Theorem836

A.1.4 Final Value Theorem837

Appendix B Solutions to the Review Questions839

Appendix C Matlab Commands855

Bibliography860

Index868

热门推荐